The winged helix transcription factor Foxg1 facilitates retinal ganglion cell axon crossing of the ventral midline in the mouse.
نویسندگان
چکیده
During normal development, retinal ganglion cells (RGCs) project axons along the optic nerve to the optic chiasm on the ventral surface of the hypothalamus. In rodents, most RGC growth cones then cross the ventral midline to join the contralateral optic tract; those that do not cross join the ipsilateral optic tract. Contralaterally projecting RGCs are distributed across the retina whereas ipsilaterally projecting RGCs are concentrated in temporal retina. The transcription factor Foxg1 (also known as BF1) is expressed at several key locations along this pathway. Analysis of Foxg1 expression using lacZ reporter transgenes shows that Foxg1 is normally expressed in most, if not all, nasal RGCs but not in most temporal RGCs, neither at the time they project nor earlier in their lineage. Foxg1 is also expressed at the optic chiasm. Mice that lack Foxg1 die at birth and, although the shape of their eyes is abnormal, their retinas still project axons to the brain via the optic chiasm. Using anterograde and retrograde tract tracing, we show that there is an eightfold increase in the ipsilateral projection in Foxg1-/- embryos. The distributions of cells expressing the transcription factors Foxg1 and Nkx2.2, and cell-surface molecules Ephb2, ephrin B2 and SSEA-1 (Fut4) have been correlated to the normally developing retinothalamic projection and we show they are not much altered in the developing Foxg1-/- retina and optic chiasm. As much of the increased ipsilateral projection in Foxg1-/- embryos arises from temporal RGCs that are unlikely to have an autonomous requirement for Foxg1, we propose that the phenotype reflects at least in part a requirement for Foxg1 outwith the RGCs themselves, most likely at the optic chiasm.
منابع مشابه
Foxd1 is required for proper formation of the optic chiasm.
In animals with binocular vision, retinal ganglion cell (RGC) axons from each eye sort in the developing ventral diencephalon to project to ipsi- or contralateral targets, thereby forming the optic chiasm. Ipsilaterally projecting axons arise from the ventrotemporal (VT) retina and contralaterally projecting axons primarily from the other retinal quadrants. The winged helix transcription factor...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملFoxg1 regulates retinal axon pathfinding by repressing an ipsilateral program in nasal retina and by causing optic chiasm cells to exert a net axonal growth-promoting activity.
Mammalian binocular vision relies on the divergence of retinal ganglion cell axons at the optic chiasm, with strictly controlled numbers projecting contralaterally and ipsilaterally. In mouse, contralateral projections arise from the entire retina, whereas ipsilateral projections arise from ventrotemporal retina. We investigate how development of these patterns of projection is regulated by the...
متن کاملSlit1 and Slit2 Cooperate to Prevent Premature Midline Crossing of Retinal Axons in the Mouse Visual System
During development, retinal ganglion cell (RGC) axons either cross or avoid the midline at the optic chiasm. In Drosophila, the Slit protein regulates midline axon crossing through repulsion. To determine the role of Slit proteins in RGC axon guidance, we disrupted Slit1 and Slit2, two of three known mouse Slit genes. Mice defective in either gene alone exhibited few RGC axon guidance defects, ...
متن کاملThe optic chiasm as a midline choice point.
The mouse optic chiasm is a model for axon guidance at the midline and for analyzing how binocular vision is patterned. Recent work has identified several molecular players that influence the binary decision that retinal ganglion cells make at the optic chiasm, to either cross or avoid the midline. An ephrin-B localized to the midline, together with an EphB receptor and a zinc-finger transcript...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 131 15 شماره
صفحات -
تاریخ انتشار 2004